17 research outputs found

    An Investigation of Multidimensional Voice Program Parameters in Three Different Databases for Voice Pathology Detection and Classification

    Get PDF
    Background and Objective Automatic voice-pathology detection and classification systems may help clinicians to detect the existence of any voice pathologies and the type of pathology from which patients suffer in the early stages. The main aim of this paper is to investigate Multidimensional Voice Program (MDVP) parameters to automatically detect and classify the voice pathologies in multiple databases, and then to find out which parameters performed well in these two processes. Materials and Methods Samples of the sustained vowel /a/ of normal and pathological voices were extracted from three different databases, which have three voice pathologies in common. The selected databases in this study represent three distinct languages: (1) the Arabic voice pathology database; (2) the Massachusetts Eye and Ear Infirmary database (English database); and (3) the Saarbruecken Voice Database (German database). A computerized speech lab program was used to extract MDVP parameters as features, and an acoustical analysis was performed. The Fisher discrimination ratio was applied to rank the parameters. A t test was performed to highlight any significant differences in the means of the normal and pathological samples. Results The experimental results demonstrate a clear difference in the performance of the MDVP parameters using these databases. The highly ranked parameters also differed from one database to another. The best accuracies were obtained by using the three highest ranked MDVP parameters arranged according to the Fisher discrimination ratio: these accuracies were 99.68%, 88.21%, and 72.53% for the Saarbruecken Voice Database, the Massachusetts Eye and Ear Infirmary database, and the Arabic voice pathology database, respectively

    Automatic Speaker Recognition for Mobile Forensic Applications

    No full text
    Presently, lawyers, law enforcement agencies, and judges in courts use speech and other biometric features to recognize suspects. In general, speaker recognition is used for discriminating people based on their voices. The process of determining, if a suspected speaker is the source of trace, is called forensic speaker recognition. In such applications, the voice samples are most probably noisy, the recording sessions might mismatch each other, the sessions might not contain sufficient recording for recognition purposes, and the suspect voices are recorded through mobile channel. The identification of a person through his voice within a forensic quality context is challenging. In this paper, we propose a method for forensic speaker recognition for the Arabic language; the King Saud University Arabic Speech Database is used for obtaining experimental results. The advantage of this database is that each speaker’s voice is recorded in both clean and noisy environments, through a microphone and a mobile channel. This diversity facilitates its usage in forensic experimentations. Mel-Frequency Cepstral Coefficients are used for feature extraction and the Gaussian mixture model-universal background model is used for speaker modeling. Our approach has shown low equal error rates (EER), within noisy environments and with very short test samples

    A Cross-Layer, Anomaly-Based IDS for WSN and MANET

    Get PDF
    Intrusion detection system (IDS) design for mobile adhoc networks (MANET) is a crucial component for maintaining the integrity of the network. The need for rapid deployment of IDS capability with minimal data availability for training and testing is an important requirement of such systems, especially for MANETs deployed in highly dynamic scenarios, such as battlefields. This work proposes a two-level detection scheme for detecting malicious nodes in MANETs. The first level deploys dedicated sniffers working in promiscuous mode. Each sniffer utilizes a decision-tree-based classifier that generates quantities which we refer to as correctly classified instances (CCIs) every reporting time. In the second level, the CCIs are sent to an algorithmically run supernode that calculates quantities, which we refer to as the accumulated measure of fluctuation (AMoF) of the received CCIs for each node under test (NUT). A key concept that is used in this work is that the variability of the smaller size population which represents the number of malicious nodes in the network is greater than the variance of the larger size population which represents the number of normal nodes in the network. A linear regression process is then performed in parallel with the calculation of the AMoF for fitting purposes and to set a proper threshold based on the slope of the fitted lines. As a result, the malicious nodes are efficiently and effectively separated from the normal nodes. The proposed scheme is tested for various node velocities and power levels and shows promising detection performance even at low-power levels. The results presented also apply to wireless sensor networks (WSN) and represent a novel IDS scheme for such networks

    Detection of premature ventricular contraction arrhythmias in electrocardiogram signals with kernel methods

    No full text
    In this paper, we propose to investigate the capabilities of two kernel methods for the detection and classification of premature ventricular contractions (PVC) arrhythmias in Electrocardiogram (ECG signals). These kernel methods are the support vector machine and Gaussian process (GP). We propose to study these two classifiers with various feature representations of ECG signals, such as morphology, discrete wavelet transform, higher-order statistics, and S transform. The experimental results obtained on 48 records (i.e., 109,887 beats) of the MIT-BIH Arrhythmia database showed that for all feature representation adopted in this work, the GP detector trained only with 600 beats from PVC and Non-PVC classes can provide an overall accuracy and a sensitivity above 90 % on 20 records (i.e., 49,774 beats) and 28 records (i.e., 60,113 beats) seen and unseen, respectively, during the training phase

    Nanofibrous Silver-Coated Polymeric Scaffolds with Tunable Electrical Properties

    No full text
    Electrospun micro- and nanofibrous poly(glycerol sebacate)-poly(ε-caprolactone) (PGS-PCL) substrates have been extensively used as scaffolds for engineered tissues due to their desirable mechanical properties and their tunable degradability. In this study, we fabricated micro/nanofibrous scaffolds from a PGS-PCL composite using a standard electrospinning approach and then coated them with silver (Ag) using a custom radio frequency (RF) sputtering method. The Ag coating formed an electrically conductive layer around the fibers and decreased the pore size. The thickness of the Ag coating could be controlled, thereby tailoring the conductivity of the substrate. The flexible, stretchable patches formed excellent conformal contact with surrounding tissues and possessed excellent pattern-substrate fidelity. In vitro studies confirmed the platform’s biocompatibility and biodegradability. Finally, the potential controlled release of the Ag coating from the composite fibrous scaffolds could be beneficial for many clinical applications. Keywords: electrospinning; electrical properties; nanocoatings; flexible electronic

    Spatial Attention-Based 3D Graph Convolutional Neural Network for Sign Language Recognition

    No full text
    Sign language is the main channel for hearing-impaired people to communicate with others. It is a visual language that conveys highly structured components of manual and non-manual parameters such that it needs a lot of effort to master by hearing people. Sign language recognition aims to facilitate this mastering difficulty and bridge the communication gap between hearing-impaired people and others. This study presents an efficient architecture for sign language recognition based on a convolutional graph neural network (GCN). The presented architecture consists of a few separable 3DGCN layers, which are enhanced by a spatial attention mechanism. The limited number of layers in the proposed architecture enables it to avoid the common over-smoothing problem in deep graph neural networks. Furthermore, the attention mechanism enhances the spatial context representation of the gestures. The proposed architecture is evaluated on different datasets and shows outstanding results
    corecore